What about CRISPR?

How gene editing could be used to enhance disease resistance in American chestnut

Jared Westbrook
Director of Science
The American Chestnut Foundation
Chestnut Chat
October 15, 2021
Motivation

Could we edit the American chestnut genome to have the disease resistance of Chinese chestnut but otherwise retain all of the characteristics of American chestnut?

American chestnut
- Not resistant to blight
- Dominant canopy tree

Chinese chestnut
- Resistant to blight
- Resistant to Phytophthora root rot
- Orchard tree
Recommended reading

The Code Breaker
Jennifer Doudna, Gene Editing, and the Future of the Human Race
Walter Isaacson
Bestselling Author of Leonardo da Vinci and Steve Jobs
Potential applications of gene editing for American chestnut restoration

If necessary, blight resistance of OxO lines could be improved by adding/activating resistance genes or knocking out American chestnut susceptibility genes.

Natural canker on Darling 58 T1 (Photo by Erik Carlson)
Potential applications of gene editing for American chestnut restoration

Increase the Phytophthora root rot resistance of American chestnut

Two regions on Chromosome 5 explain a total of 20% of variation in PRR resistance
Gene editing (or transgene insertion) enables precise changes to enhance disease resistance without linkage drag of genes unrelated to disease resistance.

Breeding enables stacking of multiple resistance genes at one without requirement of knowing the individuals genes involved in resistance.
Origin of CRISPR

Bacterial immune system against viruses (phages)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497052/#idm140504867563648title
CRISPR for gene editing

NHEJ (non-homologous end joining)
- Gene disruption—repair to native sequence results in frameshifts or mutations

HDR (homology-directed repair)
- Cotransfect cells with donor DNA
- DNA insertion—insert promoter, gene tags, and single or multiple genes
- Gene correction
Gene editing strategies

Knockout susceptibility genes with CRISPR

Pros:
- Targeted gene knockouts technically feasible with CRISPR
- May not be regulated by USDA

Cons:
- Need to screen large randomly mutagenized populations to identify susceptibility genes (if they exist).
- Knockouts of genes involved in programmed cell death may increase susceptibility to biotrophic fungi

Do mutations in susceptibility genes account for "resistance" in American chestnut?

Gene editing strategies

- Activation or repression of gene expression
- Facilitated by dead Cas proteins fused to transcriptional activators/repressors

Pros:
- Possible to change expression of multiple genes at one time

Cons:
- May be regulated as a transgenic plants due to insertion of the CRISPR gene activation construct

https://www.nature.com/articles/s41467-018-04901-6
Gene editing strategies

Host induced gene silencing

Pros:
- Target a few key pathogenicity or development genes in host (simplifies breeding)

Cons:
- May not be effective if chestnut blight rapidly kills cells and prevents expression of dsRNA in host
- Regulated as transgenic plant

Gene editing strategies

Tandem insertion of multiple resistance genes

Pros:
• Additive effects on resistance?
• Simplifies breeding with wild trees
• May not be regulated by USDA
• Could be accomplished with Agrobacterium mediate insertion rather than CRISPR

Cons:
• low rate of gene insertions with homology directed repair
Gene editing strategies

Replace multiple American chestnut alleles with Chinese chestnut alleles with Prime editing

Pros:

• Possible to make multiple types of genetic changes at once (e.g. expression, protein coding sequence)
• May not be regulated
• Make precise edits with no linkage drag

Cons:

• Need to have detailed knowledge of the genes and specific changes to make
• Need to screen large segregating populations for inheritance of edits?

https://www.nature.com/articles/d41586-019-03164-5
Bottlenecks: Resistance/susceptibility gene discovery

We do not yet know what genes to edit and what specific changes to make.

Many QTLs for blight resistance, each with small effect.

Each QTL may contain 10s to hundreds of genes.
Strategy for discovering candidate genes for blight and root rot tolerance

Step 1: Assemble chestnut reference genomes
- Chinese chestnut source of resistance
- American chestnut

Step 2: Scan hybrid genomes for regions correlated with blight tolerance
- Location of blight resistance gene
- Correlation of DNA variants with canker severity

Step 3: Compare gene expression in Chinese chestnut and American chestnut stems after blight infection
Candidate genes: within QTL intervals and demonstrate signatures of selection in Chinese chestnut
Confirm candidate gene function in resistance with knockouts in Chinese chestnut?

Infographic by Vasiliy Lakoba
Embryogenesis and genetic transformation is slow, laborious, with differing success among genotypes of American chestnut

Seeds collected

Cultures started

“Captured” SE cultures

Somatic embryo production

Somatic seedlings planted

Somatic seedlings moved to shade house

Somatic seedlings hardened-off to greenhouse

Somatic seedlings in vitro

Bottlenecks: Tissue culture and transformation

Slide from Scott Merkle
Bypass tissue culture bottleneck by inducing and transforming meristematic tissue?

Bottlenecks: Measuring blight resistance

Assessing blight resistance in the field is a multiyear process.

- Main stem alive/dead
- Presence/absence Sunken cankers
- Presence/absence Cankers > 15 long
- Presence/absence Exposed wood
- Presence/absence Sporulation

Bottlenecks: Measuring blight resistance

Assessing blight resistance in the field is a multiyear process.

- Main stem alive/dead
- Presence/absence Sunken cankers
- Presence/absence Cankers > 15 long
- Presence/absence Exposed wood
- Presence/absence Sporulation
A non-destructive early screening method for blight resistance?
Which cup to drink from?

Gene editing strategies:
- Knockouts of host susceptibility genes
- Change expression of resistance/susceptibility genes
- Host induced gene silencing
- Tandem insertions of resistance genes
- Base editing to find and replace American chestnut susceptibility with Chinese chestnut resistance

Bottlenecks to overcome:
- Resistance gene discovery/confirmation
- Tissue culture
- Measuring blight resistance
- How will the edited plants be regulated?