Genomic selection in American chestnut backcross populations

Jared Westbrook The American Chestnut Foundation

TACF Annual Meeting Fall 2017 Portland, ME

Selection against blight susceptibility in seed orchards

Artificially inoculate stems at age two with slightly pathogenic strain of *C. parasitica*

= Genes + Environment

Progress of selection in Meadowview seed orchards

	Clapper	Graves
N (%) trees planted	36,000 (100%)	25,000 (85%)
N trees remaining	3297	2244

Steve Hoy (PA Chapter) helped with removal of 2600 BC3-F2s from Meadowview seed orchards in 2017

Progeny testing has begun on BC₃F₂ trees that remain after initial culling

Progeny testing is too slow to finish selection for blight resistance

Meadowview breeding program

	Clapper	Graves
Number BC ₃ F ₂ trees remaining	3200	2200
N BC ₃ F ₂ parents progeny tested 2009-2017	300	300
N BC ₃ F_2 to select	300	300

N trees remaining after selection based on canker size >> N trees progeny tested

Genomic selection alleviates the need to progeny test all trees that remain after phenotypic selection

Variation in disease resistance in

Gene involved in blight or PRR resistance

How genomic selection works

Disease resistance predicted from the summed effects of DNA markers near disease resistance genes

How genomic selection works

expected pedigree-relationships

How are DNA markers are generated

Genotyping-by-sequencing

Genomic DNA

...TAACG**AACC**TTGGATCGTCATTCGCATACTACTACGAAAATTGCATCATA**AACC**CGC...

Development/validation of genomic prediction models for disease resistance

Proof-of-concept

Genomic prediction of canker severity ratings of BC₃F₂ trees

Degree of accounting for phenotypic Information from relatives and environmental effects

Proof-of-concept

Genomic prediction of blight resistance of BC₃F₃ progeny

Response variable: BLUPs estimated from canker rating and canker lengths of 11 – 30 open pollinated progeny of each BC3-F2 mother

Proof-of-concept

Genomic prediction of Phytophthora root rot resistance among BC_3F_3 progeny

Conclusions

- Genomic predictive abilities differ among disease severity traits
- Blight: Canker length more predictable than subjective canker severity rating
- Phytophthora: mortality and severity of root lesions more predictable than above ground wilting
- The genomic predictive abilities were encouragingly high despite the small training populations used to develop the prediction models

Ongoing genotyping for genomic selection in Meadowview seed orchards

	Clapper	Graves
N BC ₃ F_2 mothers progeny tested for blight resistance (2011 - 2019)	273	294
N BC ₃ F ₂ mothers progeny tested for root rot resistance (2012 – 2017)	102	217
N BC ₃ F ₂ to predict resistance from genotype alone	1223	865

Jason Holliday

Progeny testing will continue until genomic predictive abilities increase to 0.6 to 0.8

How blight resistant are BC_3F_3 progeny expected to be after selection is complete in BC_3F_2 seed orchards?

Dashed line

prediction of average canker severity of B3F3s after selection is complete in B3-F2 seed orchards

American chestnut BC₃F₂ trees with improved blight resistance

American chestnut

 BC_3F_2 tree

Implementation of genomic selection in chapter seed orchards

Small stem assays may be used to expedite progeny testing in chapters