Understanding the impacts of chestnut restoration through plant-soil feedback

Erin Coughlin
University of Georgia
Odum School of Ecology
Functional loss of chestnut

- Chestnuts still present in forests
- Understory shrubs
- Rarely make it to reproduction
- Impact sig. lessened
Chestnut restoration

- Efforts are underway to understand the impacts and effectiveness of restoration
- Primarily above-ground traits and interactions
Plant-soil interactions essential to restoration

- “Plant-soil interactions are the foundation for effective and sustained achievement of [terrestrial restoration] goals” (Eviner & Hawkes 2008).

- “Future [plant-soil feedback] research will better enable prediction and mitigation of the consequences of human-induced global changes, improve efforts of restoration...” (Van der Putten et al. 2013)
Positive & Negative Feedback

Positive Feedback

• Soil conditioning promotes offspring growth
• Mutualist accumulation or reduction in specific pathogens

Negative Feedback

• Soil conditioning hinders offspring growth
• Pathogen accumulation or reduction in compatible mutualists
Evidence for P-S feedback
Fungal Interactions

• Extremely important to plant growth
 – Mycorrhizae
 • Plant-fungal mutualism
 – Fungal and Oomycete pathogens
Part 1 (nearing completion)

Question 1 – What are the directions and strengths of species’ P-S interactions?

How does soil inoculum affect conspecific and heterospecific growth and survival?
Predictions

- Directions: Expect negative feedback
- Strengths: Expect variation
P-S Feedback experiment

• Fully reciprocal greenhouse experiment
• Quantifying strength and direction of species’ interactions
 – American chestnut (*Castanea dentata*)
 – BC3F3 chestnut hybrid
 – Tulip poplar (*Liriodendron tulipifera*)
 – White oak (*Quercus alba*)
 – White pine (*Pinus strobus*)
• Model effect of interactions on community composition over time
Experimental design

Seedling species

- American chestnut
- BC3F3 hybrid chestnut
- Tulip poplar
- White oak
- White pine

Soil Inoculum

- American chestnut
 - Tulip poplar
 - White oak
 - White pine
 - Control

- BC3F3 hybrid chestnut
 - Tulip poplar
 - White oak
 - White pine
 - Control

- Tulip poplar
 - American chestnut
 - BC3F3 hybrid chestnut

- White oak
 - American chestnut
 - BC3F3 hybrid chestnut

- White pine
 - American chestnut
 - BC3F3 hybrid chestnut

Response variables

- Dry Biomass (growth)
- Mycorrhizal colonization
- Percent mortality

Experimental design
Methods

- Chestnut and oak seeds initially grown in growth chamber for 1 month
- Transplanted into 2 L tree pots in greenhouse
- Pines and poplar direct seeded in greenhouse
Methods

Seedling or seed

- American chestnut seeds provided by TACF; other species by Sheffield’s Seeds

50 mL Inoculum Soil

- Collected from three FS chestnut plantings in the SE Appalachian Mtns

2 L Steam-sterilized Matrix Soil

- 2 parts field soil from mixed hardwood and pine forests
 - 1 part sand
 - 1 part peat
Methods – data collection & analysis

- Trees harvested after 5 months
- Dry biomass of roots and stems [in progress]
 - One-way ANOVA
 - Tukey’s HSD
- Percent mycorrhizal colonization [future]
Total Dry Biomass

White Oak roots

White pine

Control

American Chestnut

Soil Inoculum
Response Value ($B_r - B_c$)

White oak

- AM: b
- BC: ab
- TP: ab
- WO: ab
- WP: a

American chestnut

- AM: a
- TP: a
- WO: a
- WP: a

Soil Inoculum:
<table>
<thead>
<tr>
<th>Soil Inoculum</th>
<th>American chestnut</th>
<th>BC3F3</th>
<th>White oak</th>
<th>White pine</th>
</tr>
</thead>
<tbody>
<tr>
<td>American chestnut</td>
<td>40%</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>BC3F3</td>
<td>-</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Tulip Poplar</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>White oak</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>White pine</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Control</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Question 2: Are the microbial communities of these species significantly different?

And is there a relationship between microbial community composition and observed growth responses?
Prediction

- I expect to see a relationship between pathogen abundance and growth response.
Microbial Community Characterization

- Soil cores collected from field sites
- Meta-genomic analysis using Illumina sequencings
Current Thoughts and Future Outlook

• Still in the midst of data collection
• Currently see some significant differences in soil treatments
• Future modeling – make predictions about community composition change
• Stay tuned!
Many thanks to the following folks for their advisement and assistance:

Nina Wurzburger
Rich Shefferson
Rick Lankau
Stacy Clark
The Wurzburger Lab
The Shefferson Lab
Plant Biology Greenhouse Staff
The Odum School of Ecology, UGA
The American Chestnut Foundation
The Garden Club of Georgia
The National Garden Club