Testing Leaf Inoculation as a Blight Resistance Screening Method for Advanced Backcross Chestnuts

LaBonte, N. R. 1, McKenna, J. R. 2, Woeste, K. E. 2014. 2

1Purdue University Department of Forestry and Natural Resources, West Lafayette, Indiana
2U.S. Forest Service, Northern Research Station Hardwood Tree Improvement and Regeneration Center at Purdue University, West Lafayette, Indiana

Introduction

- A detached leaf assay (Newhouse et al. 2014) could allow earlier screening of blight resistance than the standard stem inoculation technique
 - Would allow very susceptible trees to be discarded in the first year
- Due to segregation of blight resistance alleles, B3F2 trees should vary widely in blight resistance
 - The technique was originally tested on pure species (C. mollissima, C. dentata, C. pumila)
- Indiana’s state chapter recently began stem inoculations on two large plantings of B3F2 chestnuts
- Leaf inoculations were performed on a subsample of these trees

Methods

- 100 B3F2 from the SIPAC site (southern IN), 100 B3F2 from the Potawatomi (POW) site (northern IN) 6 B3F1, 7 C. mollissima, and 5 C. dentata were screened using the detached leaf assay using Cryphonectria parasitica strain Sg88 as inoculant
- Inoculations began in early July 2014 and ended in early August
 - 4-8 leaves inoculated per individual (10-15 for pure species controls)
- Leaf lesion length and width measured after 5-7 days
 - 61 individuals at SIPAC received stem inoculations in June 2013
 - 78 individuals at SIPAC received stem inoculations in June 2014
- Variation in resistance according to stem inoculation too low at POW to be useful for assessing correspondence with leaf assay results

Results

- The leaf inoculation measurements were able to discriminate between pure species, as expected (Figure 4)
- Strong differences in resistance and leaf lesion size between northern and southern Indiana plantings (Figure 3)
- Significant (95% CI) differences in leaf lesion size among B3F2 individuals
- Leaf lesion size was poorly associated with current-year stem canker size and 1-year canker resistance rating in the SIPAC population of B3F2 trees (Figure 5, 6)

Ongoing Work

- Using leaf lesion area for greater discriminatory power
- Genetic mapping of stem and leaf lesion traits in Indiana breeding population

Figure 1. Map of American chestnut native range showing location of two B3F2 trials used in this study. SIPAC = Southern Indiana Purdue Agriculture Center; POW = Potawatomi Wildlife Park. Image source USFS.

Figure 2. Clockwise from top left: leaf lesions on Castanea mollissima, C. dentata, a third-backcross tree, and a BC3F2 individual. Photos by N. LaBonte.

Figure 3. Histogram of individual leaf lesion lengths at POW and SIPAC with means of pure species and B3 chestnut for comparison.

Figure 4. Mean leaf lesion length and width for different experimental groups of chestnuts, with 95% confidence interval for the estimate of the mean. CD= Castanea dentata, CM= Castanea mollissima.

Figure 5. Estimates of the mean and 95% CI for leaf lesion lengths and widths in SIPAC B3F2 chestnuts grouped by canker severity class (1=least severe, 5=most severe) scored 1 year after inoculation.

Figure 6. Current year stem canker length and width (scored in August after June inoculation) for B3F2 chestnuts at SIPAC plotted against leaf lesion length (left) and width (right).

Acknowledgements

Thanks are due to the Indiana ACF for the use of their breeding populations in this experiment, and also to the staff of SIPAC and the Potawatomi Wildlife Park for their help and access to property. N. Lallonte’s graduate work at Purdue is made possible by a Fred van Eck tree improvement scholarship.

Works Cited